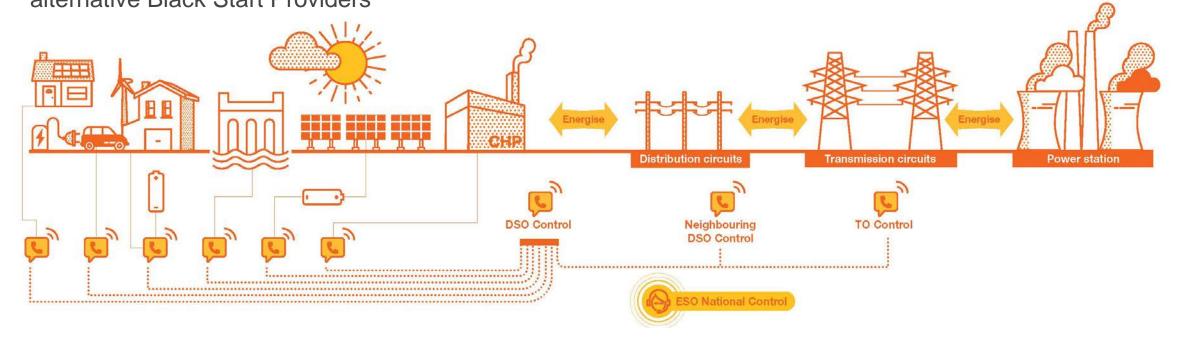
Distributed ReStart **Black Start from Distributed Energy Resources Low Carbon Network Innovation Conference Peter Chandler – Project Manager** Transition to a low carbon future

Distributed ReStart

Animation

https://www.nationalgrideso.com/innovation/projects/distribu
ted-restart


Why Distributed ReStart?

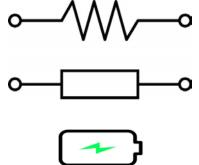
Reduce Cost to Consumers We anticipate savings of at least £115M through increased competition by 2050

Decreasing Carbon footprint Through reduction in Black Start warming we expect 810kT less emissions

Future Proofing Our Networks As our power market continues to decentralise, we need to look at alternative Black Start Providers

When Will We Deliver? **Dec 2019** Oct 2020 Process for Restoration tone 2 Defined 31 Dec 2019 Aug 2021 Oct 2020 Control Systems PMO YR 1 Designed **Distributed ReStart** Dec 2021 ject Milestone **Sept 2020** Power Engineering Live Trials Project Nov 2019 **Dec 2021** End to End Procurement Design

Known challenges


DER:

- How do we communicate?
- Who operates the unit?
- 'Anchor' unit synchronous or asynchronous?
- Must be located on a network which can be islanded
- Voltage regulation needs to change
- Fuel must be resilient to loss of supply

Flexible demand:

- Microgrids unproven at full DNO scale
- Instantaneous switching
- Frequency response provided through this unit?
- Can we value stack to improve economic efficiency?
- Can the flexible demand provide additional services?

Networks:

- Can we back-energise the network?
- Where should we install a new earth and who should own it?
- What level of automation is appropriate?
- How can we effectively segregate networks?
- How can we synchronise power islands?

What we've learnt

- Anchor generator requires 20% of its rating to stabilize through incremental small loads
- An electrically local flexible demand is needed to achieve this
- A new switchable 33kV Earth is required to enable protection to operate appropriately
- New voltage droop control settings are needed to manage network gain for legacy DERs
- Energisation of the transformer will not cause voltage to exceed limits
- Additional protection settings are needed to operate under lower fault level
- Distribution substations may only have resilience for 18-72hrs
- Low voltage fuses will operate as expected
- Growth of the network to real demand will involve near simultaneous switching of network and flexible demand to reduce block seen by generator so automation is needed

Look out for.....

ReStart Annual (Conference	30/01/2020	London	registration open
Project Managers A published	nnual Report –	31/12/2019	Ofgem paper	project deliverable
Organisational Syst Telecommunication published		08/11/2019	Ofgem paper	project deliverable
Procurement & Compliance – milestone report published		08/11/2019	Ofgem paper	project deliverable
ReStart Customer (Connection Seminar	05/11/2019	Glasgow	presenting/roundtable

Distributed ReStart

Keep in touch: ReStart@nationalgrideso.com